home *** CD-ROM | disk | FTP | other *** search
- ## Copyright (C) 1996 John W. Eaton
- ##
- ## This file is part of Octave.
- ##
- ## Octave is free software; you can redistribute it and/or modify it
- ## under the terms of the GNU General Public License as published by
- ## the Free Software Foundation; either version 2, or (at your option)
- ## any later version.
- ##
- ## Octave is distributed in the hope that it will be useful, but
- ## WITHOUT ANY WARRANTY; without even the implied warranty of
- ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- ## General Public License for more details.
- ##
- ## You should have received a copy of the GNU General Public License
- ## along with Octave; see the file COPYING. If not, write to the Free
- ## Software Foundation, 59 Temple Place - Suite 330, Boston, MA
- ## 02111-1307, USA.
-
- ## Usage: [l, m, p, e] = dlqe (A, G, C, SigW, SigV {,Z})
- ##
- ## Linear quadratic estimator (Kalman filter) design for the
- ## discrete time system
- ##
- ## x[k+1] = A x[k] + B u[k] + G w[k]
- ## y[k] = C x[k] + D u[k] + w[k]
- ##
- ## where w, v are zero-mean gaussian noise processes with respective
- ## intensities SigW = cov (w, w) and SigV = cov (v, v).
- ##
- ## Z (if specified) is cov(w,v); otherwise cov(w,v) = 0.
- ##
- ## Observer structure is
- ## z[k+1] = A z[k] + B u[k] + k(y[k] - C z[k] - D u[k]).
- ##
- ## Returns:
- ##
- ## l = observer gain, (A - A L C) is stable
- ## m = Ricatti equation solution
- ## p = the estimate error covariance after the measurement update
- ## e = closed loop poles of (A - A L C)
-
- ## Author: A. S. Hodel <scotte@eng.auburn.edu>
- ## R. Bruce Tenison <btenison@eng.auburn.edu>
- ## Created: August 1993
- ## Adapted-By: jwe
-
- function [l, m, p, e] = dlqe (a, g, c, sigw, sigv, zz)
-
- if (nargin != 5 && nargin != 6)
- error ("dlqe: invalid number of arguments");
- endif
-
- ## The problem is dual to the regulator design, so transform to lqr
- ## call.
-
- if (nargin == 5)
- [k, p, e] = dlqr (a', c', g*sigw*g', sigv);
- m = p';
- l = (m*c')/(c*m*c'+sigv);
- else
- [k, p, e] = dlqr (a', c', g*sigw*g', sigv, g*zz);
- m = p';
- l = (m*c'+a\g)/(c*m*c'+sigv);
- a = a-g*t/sigv*c;
- sigw = sigw-t/sigv;
- endif
-
- p = a\(m-g*sigw*g')/a';
-
- endfunction
-